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Abstract

The reassembly of fragmented images, akin to solving a jigsaw puzzle, presents
a challenging problem in computer vision and machine learning due to its visual,
semantic, and spatial nature. As the number of pieces increases, the permutations
of a jigsaw puzzle undergo factorial growth, amplifying the complexity further.
This problem has many applications such as reconstructing and restoring medical
images, reconstructing damaged historical documents, and combining different
camera views in autonomous perception systems. Prior approaches predominantly
centered on the supervised learning of convolutional neural networks. This study
builds upon these supervised learning techniques by integrating reinforcement
learning approaches commonly used in game and puzzle solving. In this paper,
we take inspiration from AlphaGo’s variation of a Monte Carlo tree search. Our
approach involves training a policy network through policy gradient methods,
which assigns probabilities to state-action pairs. Additionally, we devised a novel
supervised learning-based loss scheme to train our value network, enabling it to
discern the semantic similarity between our images and the ground truth. Both
the policy and value networks are based on deep convolutional neural networks.
In addition, we leverage the episodic and exploratory nature of reinforcement
learning and reframe the jigsaw puzzle as a sequential swapping game. The aim is
to demonstrate the application of reinforcement learning to an image manipulation
task.

1 Introduction

Image manipulation is a broad category of problems studied in computer vision and machine learning,
including image denoising, translation, and transformation. Image manipulation can be used for
solving problems in medicine, perception, and more. Here, we focus on the assembly of jigsaw
puzzles as our image manipulation task. We wish to demonstrate the application of reinforcement
learning to such an image manipulation task.

A jigsaw puzzle is a tiling puzzle that requires the assembly of interlocking and tessellating pieces.
Each piece has a small part of a picture on it, and thus learnable, local features; when complete,
a jigsaw puzzle produces a complete picture with emergent global properties. This problem is
challenging because it requires the model to recognize local and global patterns, understand spatial
relationships, make sense of fragmented information, and act with a tremendous search space. Solving
the jigsaw puzzle problem using machine learning is an area of research that explores techniques for
effectively integrating information from different parts of an input to improve overall understanding
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and performance in tasks such as image segmentation, object recognition, and scene understanding.
These applications are observed in reconstructing and restoring medical images, reconstructing
damaged historical documents, and combining different camera views in autonomous driving. Earlier
reassembly algorithms utilized shape [12], contour, or color [9] of the pieces to match adjacent
pieces. With the rapid advancements in machine learning, numerous approaches have been used for
jigsaw puzzle reassembly such as convolutional neural network (CNN) based methods [7], generative
adversarial network-based methods [5], and reinforcement learning [3].

We generate 3× 3 jigsaw puzzles from the MNIST dataset. There are 9! = 362880 possible puzzle
configurations which each correspond to a unique state. Though MNIST images are 28 × 28, we
form our jigsaw puzzle using nine 9× 9 pieces. These nine pieces are the input to our model. The
digits in the MNIST dataset are centered, and so the loss of some edge pixels is irrelevant. CNNs
underlie our puzzle-solving architecture. We are inspired by AlphaGo’s Monte Carlo tree search
(MCTS) variant, which utilizes value and policy networks to reduce the depth and breadth of the tree
search, respectively.

2 Related Work

In the domain of reassembly of images altered by fragmentation and permutation, the current
landscape predominantly manifests a convergence between Convolutional neural network (CNN)
methodologies and Reinforcement Learning (RL) paradigms. Pioneering strides have been made
by Le et al. [4] and Paumard et al. [6], wherein the utilization of CNNs has been instrumental in
accurately discerning and repositioning image fragments, thereby effectuating image reassembly.

However, with the development of deep reinforcement learning, leveraging the seminal work of Sutton
et al. [11], we have seen the application of reinforcement learning to countless tasks, particularly
games. In 2016, AlphaZero established complete dominance over human and computer players in the
game of Go using novel reinforcement learning techniques and deep CNNs.

More recently, we have witnessed the assimilation of the AlphaGo algorithm [8] into the reassembly
framework, as elucidated by Gras [3]. On the other hand, Song et al. [10] utilize Deep Q-Networks
instead, another recent development in the application of reinforcement learning to image reassembly.
These studies underscore the burgeoning interest in employing RL-based methodologies for the
precise reconstruction of fragmented images.

In this vein, our current work draws significant inspiration from the foundational contributions of
Sutton et al. [11] and Silver et al. [8], while also building upon the advancements put forth by Gras
[3]. Our primary model is crafted by integrating key insights from these seminal works, striving to
harness the collective potential of RL and CNNs for optimal image reassembly in fragmented and
permuted scenarios.

We have identified two starting points for this project. We implemented a baseline that [1] utilizes
a convolutional neural network architecture that represents the general approach that has been
dominantly used for this task, and the second approach we have identified [3] uses reinforcement
learning in its implementation that utilizes the recent advancements in this field. While classical
image processing techniques and CNNs can solve the problem for 2 × 2 or 3 × 3 puzzles, the
exponential size of possible rearrangements necessitates the use of reinforcement learning for larger
grid sizes.

3 Baseline

3.1 Selection

The baseline model is a dual objective system that adds jigsaw puzzle solving as a secondary objective
to improve accuracy on an image classification task. In this model, the original image and a shuffled
image are fed as input, and the network aims to classify the image using the original image and tries
to predict the permutation indices of the shuffled image. An overview of this network is given in Fig.
1. The backbone of this model is a pre-trained CNN such as ResNet or AlexNet whose last fully
connected layer is removed. The output of this network is fed to a fully connected layer to classify
the object and to another fully connected layer to predict the permutation indices of the shuffled
image. The loss function is defined as the linear combination of the cross-entropy losses of both
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objectives. In this framework, first MCTS randomly simulates different paths of actions and uses the

Figure 1: The model overview of the baseline 1

PN to estimate the value of these different paths, and the optimal action is estimated from these paths.
Then, this optimal action is applied, and the same process starts again until assigning every fragment
to a position. Also, after each simulation the final state value estimated by the VN is backpropagated.
This lets the algorithm reassemble the puzzles without having the ground truth after the training
phase.

3.2 Implementation

We implemented the baseline model with the following training parameters:

• Dataset: PACS 2 [13]
• Batch size: 128
• Pretrained network: ResNet-18
• Image Augmentations: color jitter, random horizontal flip, random grayscale
• Learning rate: 0.001

After training the network with these parameters, the accuracy we obtained is 82.14%. This was
the dataset the original authors used, and we acknowledge the limitations this has on comparing our
model, which was trained and tested on the MNIST dataset, with the baseline. In future work, we
would like explore more about how this reinforcement learning method of solving image jigsaws
generalizes to other domains and/or multiple domains.

4 Implemented Model

We chose to implement a different model than what we came across in our literature review as we
found exhibit limitations. The first baseline model we have takes the shuffled images as input uses
CNNs to predict the permutation needed to reassemble the image, but this approach is not accurate
enough. The second baseline proposed by Gras [3] reassembles the puzzle piece by piece using
the Monte Carlo tree search (MCTS), starting with an empty puzzle and putting one piece in every
step. While this method demonstrates the application of reinforcement learning and graph-based
search to puzzle reassembly, it is not robust to misplaced tiles, and cannot correct itself if a piece is
misplaced. Another limitation we encountered was the mismatch between reinforcement learning and
the non-sequential nature of this formulation. In response, we are proposing a substantial paradigm
shift by modifying the fundamental gameplay to better align with RL’s sequential learning strengths.
Our approach involves adapting the RL agent to engage in an image reassembly game allowing the
swapping of any puzzle piece with any other puzzle piece.

The objective is to enable the RL agent to learn and execute optimal strategies in reconstructing
fragmented images, thereby contributing to enhanced generalizability and efficiency in this domain.

We start by describing the problem in a more structured way.
2PACS is an image dataset for domain generalization. It consists of four domains, namely Photo (1,670

images), Art Painting (2,048 images), Cartoon (2,344 images) and Sketch (3,929 images).
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4.1 Problem Description

Figure 2: The jigsaw reassembly problem

In this paper, we assume that an image is divided into an m×m grid of same-sized tiles and each
position of this grid is numbered from 1 to m2. Letting S denote the original image, we use fi to
denote the ith tile of the original image where 1 ≤ i ≤ m2, and we use I(t) to denote the current
state of the reassembled image. We also use ri(t) to denote the ith tile of the reassembled image I(t).
We assume that as input we receive ri(t = 0), the tiles fi in a shuffled order tiles where 1 ≤ i ≤ m2.
We denote the permutation function used to shuffle the tiles as P , and using this P , the shuffled tiles
can be expressed as ri(t = 0) = fP (i). At time t = 0, we assume that the tiles are placed on the
image in this shuffled order. In each round, an action at = (i, j) can be taken. The action at = (i, j)
means swapping tiles at the ith and jth position. The final goal of this model is to reconstruct the
original image by swapping tiles this way such that when the algorithm stops at round tf , I(tf ) = I .
An example shuffled image and its reconstruction is given in Fig. 2

4.2 Dataset

We use the MNIST [2] dataset in this project. The MNIST dataset is a dataset of images of handwritten
digits and consists of 60, 000 training images and 10, 000 test images. The MNIST dataset is a
standard, simple dataset we choose for the semantic and spatial properties of handwritten digits.

For each image in the dataset, we divide the image into nine 9×9 tiles, generate a random permutation,
and reorder the tiles according to this permutation to get a shuffled image. This scrambled image
is the input into our model. Our supervised learning value net was trained in batches but our policy
network and the MCTS use instance sampling, considering just one puzzle at a time.

4.3 Model Description

In our jigsaw reassembly model, we start with a shuffled image, and at each round we select two
tiles to swap their positions. To choose the two tiles that are swapped at each round, we use the
Monte Carlo Tree Search (MCTS), a method that is also used in AlphaGo. Overall, MCTS is a search
algorithm that uses two different network models, the Policy Network and the Value Network to
generate the optimal action to take in each round. We discuss each component of this model in detail
below.

Figure 3: Overall view of the puzzle-solving architecture. The Policy Network is trained using policy
gradient methods. The Value Network is trained using supervised learning. The Monte Carlo tree
search utilizes the VN and PN to reduce the breadth and depth of search in four steps.
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4.4 Monte Carlo Tree Search (MCTS)

The last component in our model is the The Monte Carlo Tree Search (MCTS) algorithm. MCTS is a
heuristic search algorithm that was popularized by AlphaGo, though the top Go algorithms before
AlphaGo also employed MCTS. The key idea behind MCTS is to simulate and statistically evaluate
the outcomes of different trajectories to guide the decision-making process. It consists of four main
steps:

1) Selection: The algorithm starts at the root of a tree and traverses down the branches, greedily
selecting the node with the highest state-action potential U(s, a), determined using the polynomial
upper confidence bound for trees, which balances exploration (trying new moves) and exploitation
(choosing moves that seem promising based on past simulations) with the parameter cPUCT . We use
the following formulas to perform this search:

N(s, a) =
∑
i

1(s, a, i) (1)

Q(s, a) =
1

N(s, a)

∑
1(s, a, i)Vθ(si) (2)

U(s, a) = Q(s, a) + cPUCT · P (s, a) ·
√∑

b N(s, b)

N(s, a)
(3)

where Q(s, a) is the action value, Vθ is the parameterized value network, P (s, a) is the prior
probability of selecting action a in state s, as estimated by the policy network, N(s, a) is the total
visit count of state-action pair (s, a).

∑
b N(s, b) is the visit count of the parent node of (s, a).

2) Expansion: Once a promising node is reached, the algorithm expands the tree by adding child
nodes corresponding to possible moves from the promising node.

3) Simulation (or Rollout): Simulations or rollouts are performed from the expanded nodes. The
value network is used to estimate the expected outcome of the game from each simulation, providing
a more informed evaluation of potential moves. We do not estimate the expected outcome using
rollouts in our design.

4) Backpropagation: The results of the simulation are then backpropagated through the tree, updating
the statistics of each node along the path from the selected node to the root. This involves updating
the number of visits and the cumulative reward.

5) Termination: The search is terminated and the final jigsaw reassembly is given as output when
the score outputted from the value network is greater than some threshold, the maximum number of
swaps has been reached, or we terminate the game manually when the puzzle has been solved.

The overview of these steps is given in Fig. 3.

4.5 Policy Network

The policy network is used to generate action probabilities for a given image reassembly state. It
takes the current reassembed image at round t− 1 as input and produces a probability for each of
the NA =

(
m2

2

)
possible actions. The network is mainly composed of two blocks, first is the 3

Convolutional layers which takes the reassmembled image as input and outputs a vector of size 144.
This vector is then passed through the fully connected layers block to produce a probability for each
of the

(
m2

2

)
possible actions.

The architecture ablations of the policy network is given in Table 1.

The reward function ablations for the policy network are given in Table 2

The Policy Network is trained using policy gradient methods and the REINFORCE algorithm [11].
An overview in given in algorithm 1.
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Model Hidden Layers Parameters % Perfect Reassembly

1CNN_1Dense 1 × {CNN, Batchnorm}, 1 Dense Kernel Size (3), did not converge
2CNN_1Dense 2 × {CNN, Batchnorm}, 1 Dense Kernel Size (3,5) 78.4%
3CNN_1Dense 3 × {CNN, Batchnorm}, 1 Dense Kernel Size (3,5,9) 82.6%
1CNN_2Dense 1 × {CNN, Batchnorm}, 2 Dense Kernel Size (3) did not converge
2CNN_2Dense 2 × {CNN, Batchnorm}, 2 Dense Kernel Size (3,5) 84.7%
3CNN_2Dense 3 × {CNN, Batchnorm}, 2 Dense Kernel Size (3,5,9) 85.3%

Table 1: Policy Network Ablations (Intermediate Reward: 1, Reward Perfect Reassembly: 100)

4.6 Policy Network Loss and Reward Functions

Let J(θ) = E[γ0r1 + γ1r2 + . . .+ γT−1rT |πθ] be the expected discounted reward under policy πθ

with discount factor γ. The policy gradient theorem states that

∇θJ(θ) =

T−1∑
t=0

∇ log πθ(at|st)Gt (4)

where Gt =
∑T

t′=t+1 γ
t′−t−1rt′ . Using this fact, we update our policy network parameters θ using

the following:

Algorithm 1 REINFORCE

Random initialization of parameters θ
for each episode (s1, a1, r2, s2, a2, r3, . . . , sT−1, aT−1, rT ) do

for t = 1 to T − 1 do
if t is even then

θ ← θ + α∇θ log πθ(st, at)vt
end if

end for
end for

We perform gradient ascent on the expected outcome. The greater the expected reward, the greater
closer a puzzle is to complete reassembly. This is our "loss" function for the policy network.

Intermediate Reward Reward Perfect Reassembly Normalized % Perfect Reassembly

# of correct tiles 1 Perfect Assembly: 100 Y 85.4%
# of correct tiles - initial correct Perfect Assembly: 100 Y 82.6%

# of correct tiles Perfect Assembly:10 Y did not converge
-1 per time step Perfect Assembly:100 Y did not converge

Table 2: Reward Ablations (Model: 3CNN_2Dense)

4.7 Value Network

The value network is used to score the final reassembled image. It gives a score in [0, 1] based on
how close it is to the reassembled image. The network is mainly composed of two blocks, first is the
pretrained ResNet-18 block which takes the reassmembled image as input and outputs a vector of size
1000. This vector is then passed through the fully connected layers block to produce a scalar output.

This network is trained using shuffled images as input and the fraction of correctly placed tiles
(number of tiles in correct position divided by the number of correct tiles) is used as the label. The
loss function used is mean square error. The Stochastic Gradient Descent (SGD) optimizer with
learning rate 0.001 is used as optimizer (since ResNet is pretrained the learning rate is small). The
architecture of the value network is given in Fig. 4 and ablations in Table 3.
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Figure 4: The value network

Model Hidden Layers Parameters

3layerCNN_2Dense 3 × {CNN, Maxpooling, Batchnorm}, 2 Dense Kernel Size (3,5,9)
1Resnet18_2Dense Resnet18, 2 Linear, Softmax Resnet

Table 3: Value Network Architecture Ablations

4.8 Value Network Loss Function

The selection of the Mean Squared Error (MSE) loss function is ideal for regression tasks due to its
ability to penalize larger errors quadratically. Let’s denote the dataset as D, where ’n’ represents
the index of the nth image in the dataset. The permuted image as P (In) with associated semantic
score yn and the value networks predicted semantic score as ŷn. This aligns with the objective of
minimzing the average squared difference between predicted ŷn and yn to train the optimal value
network for evaluating the state.

MSE =
1

|D|

|D|∑
n=1

(yn − ŷn)
2 (5)

4.9 Evaluation Metric

We have two different metrics to evaluate the performance of the model. The first metric Mp, is the
fraction of perfectly reassembled images by the model. It can be written as:

Mp =

∑|D|
n=1 1{In(tf ) = Sn}

|D|
(6)

where Sn is the nth image in the dataset D, Ix(tf ) is the final reassembled image of Sn, and 1{·} is
the indicator function.

The Mp metric, measuring the ratio of perfectly reassembled images by the model, stands as a pivotal
evaluation tool for assessing image reassembly performance. By quantifying the instances where
the model accurately reconstructs input images, Mp offers a clear gauge of fidelity and accuracy in
replication.

The second evaluation of metric that we use is Me, the fraction of correctly placed tiles in the final
reconstructed image. It can be written as:

Me =

∑|D|
n=1

∑m2

i=1 1{ri(tf ) = fi}
m2|D|

(7)

The Me metric, which measures the mean fraction of correctly placed tiles by the model, is crucial
for understanding the model’s performance. By quantifying the instances where the model accurately
reconstructs input images with a nuanced measurement, as opposed to the binary metric of Mp, Me

offers a more informative gauge of accuracy in replication.
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5 Results

5.1 Training Results of the Policy Network

The MNIST dataset was used to train the policy network. The MNIST dataset was divided into
training and validation, and for each set the image is preprocessed in the following way. First,
for image indexed as n in the dataset, Ns(n) ∼ x(n) represents the image Ns(n) after random
permutation of tiles. The target label for this image is a m× 1 tensor y(n) =

∏m
i=1{i} where each

tile is represented in its correct location. The network is trained on the MNIST dataset using these
input images and output labels for 15 epochs. The training and validation metrics of the policy
network during training in the MNIST dataset are given in Fig. 5 and Fig. 5. After training for
15 epochs, the policy network took on average 13.66 steps to fully reassemble the puzzle when
reassembly occurred on the test set. The policy network was able to fully reassemble the puzzle
Mp = 92.95% on the test set with Me = 85.2%.

Figure 5: Training and Validation plot of the policy network. The orange line represents a running
average of the number of swaps taken in the last 10 puzzles. The blue lines represent the number of
swaps for each episode.

5.2 Training Results of the Value Network

MNIST dataset is used to train the value network. The MNIST dataset is divided into training,
validation, and test sets, and for each set the image is preprocessed in the following way. First, for
image indexed as n in the dataset, Ns(n) ∼ unif{0,m2} that represents the number of tiles that will
be shuffled is sampled uniformly from 0 to m2. Then, Ns(n) many tiles are selected randomly, and
these tiles are shuffled to form the input image x(n). The target label for this image is then calculated
as y(n) = 1−Ns(n)

m2 . The network is trained on the MNIST dataset using these input images and
output labels for 50 epochs. The training and validation loss of the value network during training in
the MNIST dataset is given in Fig. 6. After training for 50 epochs, the final validation loss is 0.0131,
and the final training loss is 0.0133.

Figure 6: The MSE loss of the value network during training on the MNIST dataset
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5.3 Results of the MCTS

The MCTS performance had varied results. During some runs, the MCTS achieved reassembly in
significantly fewer swaps than a greedy use of the policy network and in other cases, the MCTS
achieved reassembly at higher rates with the use of significant computational resources. More
ablations and hyperparameter tuning and problem-specific tuning need to be done to apply the MCTS
properly to this problem of puzzle reassembly.

6 Discussion

Jigsaw assembly is a computationally intensive task due to the large search space that needs to be
considered, and as a result of this, even other competitive baseline models consider only 3×3 jigsaws.
Hence, executing this pipeline with computational efficiency is key to the success and practical
applicability of the model. In this work, we achieve computational efficiency through the use of both
the policy network and value network in the MCTS search. The main intuition behind it is that a
good policy network and a good value network would sufficiently constrain tree search for any size
board, maintaining computational efficiency.

In terms of accuracy, as discussed in the results section, our model has higher accuracy compared to
the baseline models. Our base MCTS model, though accurate, is sensitive to noise perturbations and
not smooth training. This is because the hyperparameter for the Exploration/Explotation tradeoff in
MCTS requires careful tuning for the specific dataset. This can be improved by using an ensemble
of MCTS agents with different hyperparameters to ensure robustness. Additionally, we can also
introduce prioritized experience replay to our MCTS for more stable learning, improving sample
efficiency, and faster convergence.

For practical application, additional experimentation on more diverse datasets with varying colors is
necessary. Without such experiments, it would be imprudent to extrapolate the performance of our
architecture to real-world applications in autonomous vehicles and medical imaging.

7 Future Works

We used the pretrained ResNet model in our project to cut back on training time for our value network.
In the future, a more fine-tuned convolutional neural network can be used in the value network to
improve the accuracy of the model and the size of the model.

We can also improve the computational efficiency of our model by fine-tuning our model for increased
efficiency, and also experiment using an ensemble of simpler MCTS agents. This way, we can also
extend our results to more complex puzzles such as the 4× 4 sized puzzles. Using our trained models
in an image classification task using transfer learning is also one of the future works that we will
consider.

More investigation needs to be done in the hyperparameter tuning of the MCTS, such as the number of
simulations, exploration weight cPUCT , exploration weight scheduling, etc. These hyperparameters
are key for balancing accuracy and computational efficiency.

8 Conclusion

The reassembly of fragmented images remains a complex challenge within the realms of computer
vision and machine learning. Our endeavor aimed to push the boundaries of conventional supervised
learning by integrating reinforcement learning techniques inspired by AlphaGo’s Monte Carlo tree
search. Through the development of a policy network utilizing policy gradient methods and a unique
loss scheme that utilizes supervised learning for semantic evaluation, we successfully ventured
beyond the traditional approaches focused solely on convolutional neural networks.

Our study represents a important milestone in tackling the intricate nature of image reassembly.
We not only demonstrated the efficacy of our AlphaGo-inspired approach in near-matching exist-
ing benchmarks but also showcased the adaptability of reinforcement learning methodologies in
addressing visual, semantic, and spatial challenges inherent in fragmented image reconstruction.
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The implications of our findings reverberate across diverse domains, ranging from medical imaging
reconstruction to historical document restoration and autonomous perception systems. By leveraging
the episodic and exploratory characteristics of reinforcement learning, we reframed the puzzle
assembly process as a sequential swapping game, showcasing the versatility and applicability of RL
paradigms in complex image manipulation tasks.

While we achieved considerable success in capturing semantic meaning within images and translating
them into reassembly, our findings also open avenues for further exploration. Importantly, our MCTS
algorithm needs to be fine tuned to balance both improve policy/action selection and computational
resources. MCTS can be computationally costly, and the greater the computational cost the more
MCTS is likely to succeed, though for sufficiently complex games, such a large tree search is feasible
and the balance between search and utilization of the policy network and value network becomes
crucial. In our simple 3 × 3 scenario, we were not able to sufficiently perform hyperparameter
tuning and analysis. Future endeavors could delve deeper into refining the RL model’s adaptability to
varying puzzle complexities or explore novel ways to integrate multiple modalities beyond visual
cues for a more holistic reassembly approach.

In essence, our most significant contribution is the success of our AlphaGo-inspired approach, offering
a promising direction for the fusion of reinforcement learning and image manipulation tasks, laying
the groundwork for more sophisticated applications in the realm of computer vision and machine
learning.
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